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Abstract

The Outgoing Longwave Radiation (OLR) data from the Earth Radiation Budget 
Experiment (ERBE) were analyzed for the period during which all three ERBE satellites were 
operating i.e. December 6, 1986 to January 19, 1987, to study the diurnal variation. A cubic 
spline interpolation technique was used to fill the gaps between the sampled hours of OLR. 
The interpolated data was composited to obtain mean diurnal time series of OLR. In order to 
extract the diumally varying dominant modes, an Empirical Orthogonal Function (EOF) 
analysis technique was applied to the normalized anomalies of the composite daily OLR.

The first EOF mode explains 53.2% of the total normalized variance. Its spatial 
pattern is dominated by positive loadings located over the oceanic cloudy regions and its 
temporal variation indicate a strong semi-diurnal cycle with maxima and minima coinciding 
with the equator crossing times of the NOAA-9 and NOAA-IO satellites. It is argued that the 
semi-diurnal cycle noticed in this mode is not realistic and is caused by biases in retrieving 
OLR from different instruments on board NOAA-9 and NOAA-IO . The temporal variation of 
the second EOF mode indicate a true diurnal signal with most of the spatial variation occurring 
over the dry continental regions. In the third EOF mode, most of the variation is over cloudy 
regions, whose temporal variation indicate a semi-diurnal variation modulated by a large 
amplitude diurnal cycle. The effect of this instrumental bias is clearly evident in the global 
averages of the OLR.
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1. Introduction

The earth's climate system varies on various spatial and temporal scales. To fully 
understand the climate, knowledge of its spatial and temporal variation is crucial. Top of the 
atmosphere radiation budget parameters have proven to be good indicators of climate 
variations on annual and interannual time scales. Though these radiation budget parameters 
can be measured instantaneously with acceptable accuracy with current remote sensing 
techniques, their temporal sampling is inadequate especially on a diurnal time scale to obtain 
reasonable daily and monthly means. To rectify this diurnal sampling problem, the National 
Aeronautics and Space Administration (NASA) launched an experiment called the Earth 
Radiation Budget experiment (ERBE) (Barkstrom, B. R., 1984). The ERBE is comprised of 
three satellites, one in a mid inclined (57°) precessing orbit and two in polar orbits with 
different equator crossing times. This orbital configuration was aimed at achieving diurnal 
sampling adequate enough to obtain reasonable diumally averaged radiation budget parameters 
(Brooks and Minnis, 1984).

Each of these satellites carried scanning and non-scanning radiometers. The scanning 
instruments measured radiances in three spectral intervals viz. shortwave (.2-5^tm), longwave 
(5-50^m) and total (.2-50/xm). The non- scanning instruments are still operating and they 
measure radiances in two spectral intervals viz. shortwave (.2-5 /tm) and total (.2-50 /xm).
The Outgoing Longwave Radiation (OLR) from the scanner is obtained as a difference 
between the total and shortwave channel fluxes during daytime and the flux from the total 
channel during nighttime. Initially only two satellites were launched, one in polar orbit 
(NOAA-9: equator crossing time 2:30 P.M. local time) and the other in precessing orbit 
(Earth Radiation Budget Satellite, ERBS). It was not until November of 1986, when the third 
satellite (NOAA-10: equator crossing time 7:30 A.M. local time) was launched in a polar 
orbit. Unfortunately, the scanning instrument on the NOAA-9 ceased operating on 
January 19, 1987. As a result, there was only a period of 45 days, between December 6,
1986, and January 19, 1987, during which the scanner instruments on all three satellites were 
operating continuously. In this study, the OLR data obtained during this 45 day period were 
analyzed to study the diurnal variation.

Depending on the cloud and geographic scene types, the ERBE data processing scheme 
uses a combination of a linear and half sine diurnal model to fill in the missing longwave 
values (Brooks et al, 1986). The half-sine diurnal model with phase angle fixed at local noon 
is used for clear-sky conditions over land and desert geographic types. The criteria to apply 
this half-sine model are (i) there must be at least one daytime measurement located more than 
1 hour from the terminator, (ii) there must be at least one nighttime measurement, (iii) the 
least square sine wave fit to the daytime data must have a positive amplitude, (iv) the peak 
value of the daytime fit must not exceed 400 Win2 and (v) the length of the day must exceed 2 
hours. The linear interpolation technique is applied at all times and for all scene types.
Though this diurnal scheme gives reasonable estimates of the monthly mean OLR, it does not 
necessarily represent the true climatological diurnal variation of the broadband OLR especially
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over deserts and clear-sky land regions, because of its heavy dependence on the half sine 
model. Cheruy et al. (1991) analyzed NOAA-9 and ERBS combined data set for the months 
of April and July 1985 over tropical Africa and neighboring Atlantic regions and compared it 
with METEOSAT observations. They concluded that a combination of two Sun synchronous 
polar orbiting satellites and one mid inclined precessing satellite would eliminate most of the 
diurnal sampling errors. Motivated by their conclusion, we made an attempt to analyze the 
OLR data from the 45 day period during which all three ERBE scanners operated 
simultaneously.

2. Data and Analysis Procedure

The ERBE data analyzed in this study are top of the atmosphere radiation fluxes 
available on the ERBE S-9 data tape. It consists of monthly mean products, daily products 
which are based on observed and model built values, and actual sampled hourly values, on a 
2.5° longitude x latitude resolution. A description of the archived ERBE data product, ERBE 
instruments and data processing is given by Barkstrom et al. (1989). Actual sampled hourly 
fluxes of OLR for average sky conditions were extracted from the S-9 data tape for the three 
satellite combination period, December 6, 1986 to January 19, 1987. First, sampling of OLR 
was examined to get an idea of the feasibility of performing a diurnal variation study.
Sampling of the OLR from the three satellites was examined for every grid point in the 
latitudinal direction and every fifth grid point in the longitudinal direction. Table 1 shows the 
average sky OLR sampling of each local hour for every other latitude band centered at 1.25°E. 
The number in each column indicates the number of times that particular local hour was 
sampled by all three satellites together. As one can see from this table, sampling is good 
covering many local hours at higher latitudes where there is an overlap in the coverage by 
scanners on board polar orbiting satellites. As expected, high frequency of sampling is noticed 
at local hours approximately 1530 LST (0330 LST); and 1930 LST (0730 LST) during the 
ascending (descending) nodes of the NOAA-9 and the NOAA-10, respectively. The hours not 
sampled well by the polar orbiting satellites are filled by the ERBS. Since ERBS samples only 
up to 57° latitude in either hemisphere, one can notice gaps in sampling poleward of that 
latitude. The sampling pattern by polar orbiters is similar to this at other longitudes as well, 
except the local hours sampled by the ERBS change.

As a preliminary analysis, a composite diurnal variation of OLR was obtained by 
averaging all sampled observations at each local hour over the entire study period at a few 
selected grid points. This showed a sampling bias to the heavily sampled local hours by the 
NOAA-9 and NOAA-10 satellites. The local hours that were not sampled by either of these 
two satellites were sampled only once or twice during the entire study period by the ERBS. 
Some local hours were not sampled at all. Furthermore, due to the precessing nature of the 
ERBS, whatever values sampled by it are representative of the synoptic conditions present at 
the time of sampling rather than the average conditions of the entire study period. Therefore, 
the composite diurnal variation obtained by this procedure did not appear to be realistic.
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Hence this analysis procedure was discarded and a different procedure was followed as 
described below.

All the sampled hourly OLR observations starting from December 6, 1986, to 
January 19, 1987, were arranged sequentially. A cubic spline interpolation technique was used 
to fill the data gaps. Cubic spline interpolation technique takes the slope of the observations 
into account when interpolating. A segment of the time series obtained from both the linear 
interpolation between the observations and the cubic spline technique are shown in figure 1, 
for a region over the Sahara where the diurnal variation of OLR clearly follows the diurnal 
variation of surface temperature. The time series obtained from cubic spline interpolation is 
smoother than the one obtained from the simple linear interpolation. A composite diurnal 
cycle using interpolated (cubic spline) data was obtained by grouping the observations by local 
hour and averaging them over all 45 days. The composite diurnal variation for the grid point 
over the Sahara is shown in figure 2. For comparison purposes, monthly mean (average of 
December '86 and January '87) OLR diurnal cycle extracted from the ERBE S-9 tape is also 
produced in figure 2. This diurnal cycle was constructed by the ERBE data processing 
algorithm (Brooks et al, 1986) and depends on the linear interpolation and half sine model 
when certain criteria, explained earlier, are met. The diurnal variation obtained from cubic 
spline (solid curve) shows a maximum in OLR at 1400 LST and a minimum around 0400 to 
0500 LST. To a first approximation, this OLR diurnal behavior follows the diurnal surface 
temperature behavior over the deserts with peak occurring in the afternoon and slowly cooling 
off until after sunrise the following morning (Rosenberg et al.,1983; Riehl, 1979; and 
Harrison et al. 1988). The diurnal variation from the monthly means (dotted curve) show a 
peak at 1300 LST. This is biased to the half-sine diurnal model in the analysis, which uses a 
peak at local noon. It is evident from these curves that with the satellite configuration used in 
the ERBE, one can obtain a realistic diurnal cycle of the OLR without resorting to any diurnal 
modeling. The small differences in diurnal amplitude may be attributed to the differences in 
the analysis procedures.

In order to give equal importance to all grid points in the analysis, the composite daily 
mean was subtracted and the anomalies were normalized by the standard deviation at each grid 
point. An Empirical Orthogonal Function (EOF) analysis technique was applied to the 
normalized OLR anomalies to obtain diumally varying dominant spatial modes. Unlike 
harmonic analysis whose temporal variation is constrained by sinusoidal diurnal, semi-diurnal 
etc. variations, the time variation of EOF modes are selected such that they represent the 
diurnal variation of the dominant modes with maximum explained normalized variance. This 
technique was applied widely in climate research to study the temporal and spatial variation of 
various parameters (for example, Kutzbach, 1967, Kidson, 1975, Smith et al, 1990, 
Kondragunta and Gruber, 1994) and also to obtain the systematic instrumental biases, 
especially in satellite data (Chelliah and Arkin, 1992).
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3. Results

In order to give meaningful interpretation, the spatial patterns of the EOF modes are 
expressed in terms of correlation coefficients. These are the correlations between normalized 
anomaly time series and the respective eigen function at each grid point. A positive (negative) 
correlation coefficient in the spatial map indicates that the actual normalized anomaly time 
series is positively (negatively) correlated with the time variation of that eigen mode. For 
example, at a grid point where the correlation coefficient is positive in the spatial pattern (Fig. 
3a), the diurnal variation of OLR is such that it has positive peaks at 0800 LST and 2000 LST 
(Fig. 3b). Similarly, at a grid point where the correlation coefficient is negative (Fig. 3a), the 
diurnal variation of OLR is such that it has positive peaks at 0400 LST and 1500 LST. These 
correlations can also give the local variance explained by that particular eigen mode at each 
grid point by simply taking the square of the correlation coefficient.

Presented in figs. 3a and 3b are the spatial patterns of the EOF-1 and its time variation, 
respectively. Most of the spatial loadings are positive and they occur mostly over the oceanic 
regions. The time variation of this pattern indicate a semi-diurnal variation, with maxima at 
0800 LST and 2000 LST and minima at 0400 LST and 1500 LST. It is important to note that 
these maxima and minima coincide with the equator crossing times of the NOAA-10 and 
NOAA-9, respectively. The systematically positive correlations heavily weighted to the 
southern hemisphere, in this case, indicate some kind of bias in the data. Moreover, these 
high positive correlations occur mostly over the oceanic cloudy regions which indicate that the 
bias is related somehow to retrieval of OLR from cloudy scenes. At this point it is our 
conjecture that the semi-diurnal cycle shown in this mode is not the true diurnal variation of 
OLR and is caused by biases in retrieving OLR from different instruments. This point is 
discussed more extensively in the next section. There is also an indication that the semi
diurnal variation in this mode is modulated by a diurnal cycle. However, the phase of this 
diurnal cycle are not in agreement with the earlier studies (Gruber and Chen, 1989, Hartman 
and Recker, 1986, Kondragunta et al, 1993, Minnis and Harrison, 1984 and Meisner and 
Arkin, 1987). This disagreement again confirms that the diurnal variation shown in this mode 
is not realistic. This mode explains 53.2% of the normalized variance.

Presented in fig 4a and 4b are the spatial pattern of the EOF-2 and the associated time 
variation, respectively. The spatial pattern clearly shows high positive correlations over the 
dry continental regions. The time variation indicate a strong diurnal signal. This mode 
indicates that over the continental regions, OLR is maximum at 1500 LST and minimum at 
0500 LST. The OLR in this mode is basically contributed by the surface emission. To a first 
approximation, the diurnal variation of OLR shown in this mode is a clear manifestation of 
diurnal variation of surface temperature, which rises rapidly until afternoon and cools off 
slowly till the Sunrise of next day morning (Rosenberg et al., 1983). The diurnal cycle shown 
in the time variation of this mode is an indication that the three satellite configuration 
employed by the ERBE is good enough to adequately represent the diurnal variation of OLR. 
This mode explains 27.2% of the total normalized variance.
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Presented in fig. 5a and 5b are the spatial pattern and the associated time variation of 
the EOF-3, respectively. In this pattern most of the variation occurs over cloudy regions. The 
time variation of this mode show a semi-diurnal cycle modulated by large amplitude diurnal 
cycle with maximum at 2000 LST and minimum at 0500 LST. Negative loadings are found 
over the deep convective cloudy regions, such as, the Congo river basin in southern part of 
Africa, maritime continent, Amazon and in a scattered way along the South Pacific 
Convergence Zone (SPCZ), South Atlantic Convergence Zone (SACZ) and the Inter Tropical 
Convergence Zone (ITCZ). The time variation of this mode indicate a peak in the evening, 
which means over these regions low OLR occurs in the evening. This OLR is emitted from 
the high level cold clouds present over these regions whose diurnal variation is consistent with 
the diurnal variation of OLR in this mode (Hartman and Recker, 1986; Gruber and Chen,
1988; and Kondragunta and Gruber, 1994). Positive loadings in the spatial pattern are noticed 
mostly over the oceanic stratocumulus regions. Time variation indicates that minimum OLR 
occurs over these regions around 0500 LST. This is again in agreement with the low level 
cloudiness maximum over these regions which occurs around this time of the day (Hartman 
and Recker, 1986; Gruber and Chen, 1988; and Kondragunta and Gruber, 1994). So far, the 
diurnal part of variation in OLR is in excellent agreement with the earlier studies. However, 
the difficult part is accounting for the semi-diurnal variation most of which occurs in the 
negative side of time coefficients. Minnis et al. (1987) noticed semi-diurnal variation in 
cloudiness over the oceanic stratocumulus and trade cumulus regions. The phases of the semi
diurnal variation presented in this mode agree to some extent with those of Minnis et al.
(1987) considering that they fitted a second harmonic to the data. They also suggested that the 
semi-diurnal pressure wave, forced by the atmospheric semi-diurnal tidal wave (Brier and 
Simpson, 1969), may be the likely cause for this variation. However, the discussion 
presented in the next section proved it to be otherwise. This mode explains 11.6% of the 
normalized variance.

4. Discussion

There are two possibilities that can cause the semi-diurnal variation noticed in the mode 
EOF-1. The first one is the differences in OLR retrieved from the instruments on board two 
different satellites. The second possibility is that the semi-diurnal variation is the true 
variation of the atmosphere and the possible cause is the atmospheric semi-diurnal tidal force. 
Strong evidence for the first possibility arises from a study by Minnis et al. (1991) who 
analyzed OLR from the NOAA-9, NOAA-10 and ERBS for the month of December, 1986. 
They found that over the oceanic regions, OLR fluxes retrieved from NOAA-9 and NOAA-10 
are systematically lower and higher than the ones retrieved from the ERBS, respectively. In 
addition Gruber et al. (1994) and Ellingson et al. (1994) noticed that the daytime OLR fluxes 
from NOAA-9 are systematically lower than the nighttime ones. They also noticed that, in a 
zonal average sense, OLR fluxes from NOAA-9 are smaller than the ones from the ERBS 
during daytime. Furthermore, very convincing evidence was presented in a more detailed 
analysis performed by Thomas et al. (1994) where they investigated the biases in OLR 
retrievals from the ERBE scanners. They concluded that the daytime OLR retrievals from
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NOAA-9 and NOAA-IO are biased and they are due to a longwave spectral correction. These 
biases are such that NOAA-9 under estimates and NOAA-IO over estimates with respect to the 
ERBS.

If one assumes that the OLR from the ERBS represents true fluxes at any instant, with 
the instrumental biases described before, the NOAA-9 fluxes will have lower than the true 
diurnal values around 0400 LST and 1500 LST and those from NOAA-10 will have higher 
than true diurnal values around 0800 LST and 2000 LST. Since the sampling is very high 
around the equator crossing times of the NOAA-9 and NOAA-10 compared to the ERBS, a 
semi- diurnal cycle with maxima at 0800 LST & 2000 LST and minima at 0400 LST and 
1600 LST coinciding with the equator crossing times is expected in the OLR data. Also since 
Minnis et al. (1991) noticed the discrepancies over the oceanic cloudy regions, this kind of 
semi-diurnal cycle is expected mostly over the oceanic regions. The results presented in the 
first EOF mode are consistent with the above scenario. Therefore, we conclude that the semi
diurnal variation noticed in this mode is spurious. It is important to note that this type of 
semi-diurnal variation is predominant over the oceanic cloudy regions, especially over the 
stratocumulus regions, because the amplitude of the natural diurnal cycle itself is small over 
these regions. The possible reason for the large biases over the oceanic regions can be 
explained by referring to the OLR retrieval procedure in the ERBE algorithm. In the ERBE 
data processing algorithm, OLR is retrieved as a difference of total channel flux minus the 
shortwave channel during daytime and total channel flux itself during nighttime. If there is an 
error in retrieving reflected shortwave flux, that error will propagate into the longwave 
retrieval as well. This suggests that the biases in OLR come from the errors in retrieving 
reflected shortwave. This is confirmed by an independent analysis on the pixel scale by 
Thomas et al. (1994). Confirmation was also presented by the smaller instrumental biases in 
the relatively cloud free regions as shown in the EOF-2 mode which shows variation mostly 
over relatively cloud free continental regions. So the possible cause which could introduce 
biases in the OLR are consistent with the results presented in the first EOF mode. Moreover, 
a diurnal variation study of the International Satellite Cloud Climatology Project's (ISCCP) 
total cloudiness show a strong diurnal cycle as the dominant mode of variation in the first two 
EOF modes (Kondragunta and Gruber, 1994). Since OLR and cloudiness have inverse 
relationship, to a large extent in the tropical regions, the dominant modes of OLR also should 
show strong diurnal variation. If there were no instrumental biases in OLR, then the diurnal 
variation of OLR would have a minimum around 0500 LST and maximum around 2000 LST 
(Hartman and Recker, 1986; Gruber and Chen, 1988; and Kondragunta et al., 1993).

One might argue that the semi-diurnal variation shown in the EOF-1 is the true semi
diurnal mode of the atmospheric tidal oscillation. This possibility was checked by comparing 
our results with the existing literature on the semi-diurnal modes of the atmosphere (Chapman 
and Lindzen, 1970). The atmospheric semi-diurnal oscillations are caused by the atmospheric 
thermal tide. According to Brier and Simpson (1969), this tidal oscillation forces a semi
diurnal pressure wave in the tropics. These pressure fluctuations cause semi-diurnal variations 
in divergence and convergence fields, which in turn can cause fluctuations in cloudiness and
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rainfall. The phases of these semi-diurnal variations in cloudiness occur at 0800 LST and 
2000 LST (Brier and Simpson, 1969), which implies minimum OLR at these times. In the 
present study the phases of the semi-diurnal cycle shown in the EOF-1 mode do not agree with 
the phases of the diurnal cycle in the cloud field, supposedly forced by the atmosphenc semi
diurnal tide. This rules out the possibility of the atmospheric semi-diurnal tidal wave as 
possible cause of the semi-diurnal oscillation noticed in the EOF-1 mode. This leaves us with 
the alternative that the retrieval bias is the main candidate responsible for the semi-diurnal 

variation noticed in the mode EOF-1.

To demonstrate that the semi-diurnal variation noticed in the first EOF mode is not an 
artifact of the analysis procedure employed in this study, composite diurnal variation of OLR 
at a few selected grid points were examined. Presented in figure 6a is the time series of 
composite OLR at a grid point over the stratocumulus cloudy region in the S.E. Atlantic. A 
semi-diurnal cycle whose maxima and minima coinciding with equator crossing times of the 
NOAA-9 and NOAA-10 is obvious in this curve. Both cubic spline and linear interpolation 
techniques clearly show similar variation. The difference between the maximum and 
minimum is about 9 Wm'2. From the regression relationships given by Minnis et aL, (1991)
(for the month of December 1986, during daytime over oceanic regions: NOAA9^= -4.77 +
0 99*ERBS and NOAAIO = 3.93 + 0.99*ERBS), for a given value of 270 Wm' from the 
ERBS, the bias in NOAA-9 is 7.5 Wm'2 lower and NOAA-10 is 1.2 Wm 2 higher, with 
respect to the ERBS. The net difference is 8.7 Wm'2 which is in close agreement with the 
amplitude of semi-diurnal cycle noticed in this time series. Since biases in the NOAA-9 and 
NOAA-10 are in opposite directions with respect to the ERBS, they add up and show up as a 
semi-diurnal cycle in the analysis presented in this study. Gruber et al. (1994) also noticed 
similar differences of the order of about 4 Wm2 between NOAA-9 and ERBS 
(NOAA < ERBS) during daytime in zonal averages for the month of April 1985. Minnis et al. 
(1991) also reported that the differences in OLR fluxes between NOAA-9 and ERBS during 
daytime have almost doubled since the beginning of the experiment to demise of the NOAA-9

scanner.

Another such time series is presented in figure 6b which shows the variation of 
composite OLR at a grid point over the S.E. Pacific. This also clearly shows the effect 
described above. A grid point over the Andes (fig. 6c) was chosen to demonstrate that such 
instrumental bias is minimum over relatively cloud free regions. The time series at this grid 
point show the true diurnal variation of OLR remarkably well. Excellent agreement of this 
with the results of Harrison et al (1988) based on GOES data confirms the validity of the 
analysis presented in this study. It is interesting to note that the OLR peak in this time senes 
occurs near noon, unlike over the Sahara (fig. 2) where the peak occurs in the afternoon.
This suggests that over elevated places OLR peak occurs near noon. Of course, it should be 
noted that the phase of the OLR over dry continental regions depends on the soil type and soil 
moisture content, in addition to the elevation. In summary, instrumental biases are noticed 
only over cloudy regions as depicted by EOF-1 and EOF-3 modes (also figures 6a and 6b) and 
virtually absent over relatively cloud free regions as depicted by EOF-2 (also figs. 2 and 6c).

9



What makes this study more interesting is the effect of the instrumental bias, as 
presented in this study, on the global averages of OLR. Figure 7 shows the time series of 
monthly mean global averages of OLR from the NOAA-9 and ERBS combined (February 
1985 to January 1987), and NOAA-IO and ERBS combined (December 1986 to May 1989) 
period. Note that December 1986 and January 1987 have data from all three satellites. The 
dominant oscillation of this time series is the annual cycle . In addition, there is a sudden 
jump in the time series from the period NOAA-9 and ERBS combined to NOAA-IO and 
ERBS combined. This sudden jump in the time series is consistent with the biases in the OLR 
retrieval from the different instruments discussed in this paper. Kyle et al. (1993) showed that 
global (60°N to 60°S) longwave mean of NOAA-9 is smaller by 5.2 Wm'2 and of NOAA-IO is 
larger by 3.1 Wm 2 with respect to the ERBS for December 1986. Though they attributed 
these differences to different diurnal sampling times, they did not rule out the possibility of 
diurnal averaging methods and calibration differences. This study mainly points to the biases 
present in the OLR data and not aimed at making any corrections. Nevertheless, the biases 
in the OLR data, as presented in this study, have significant contribution to the biases in the 
global means as shown in figure 7. In order to maximize utilization of the ERBE OLR data 
for climate change detection or model validation, it is necessary that these biases be corrected. 
Since there are no ground truth measurements for the top of the atmosphere radiation budget 
parameters, one way to adjust these biases is to consider the OLR from the ERBS as standard. 
This enables the OLR data to be uniform throughout the experiment period. Additionally, one 
may consider using alternative methods for obtaining OLR when reprocessing the data.

5. Concluding Remarks

The OLR data from the ERBE three satellite combination were analyzed to study the 
duimal variation. The first EOF mode which explains the largest normalized variance 
indicates a strong semi-diurnal signal. It was argued that this semi-diurnal signal is not 
realistic and is caused by the systematic biases in the retrieval of the OLR from different 
instruments on board different satellites, viz., NOAA-9 and NOAA-IO. This conclusion was 
drawn based on the facts that (i) the phases of the semi-diurnal variation noticed in the first 
EOF mode agree with the equator crossing times of the NOAA-9 and NOAA-IO satellites, (ii) 
There was ample evidence for systematic biases in OLR retrieval from earlier studies and (iii) 
the semi-diurnal cycle shown in the first EOF mode is not supported by the atmospheric tidal 
theory as a possible mechanism. A true and strong diurnal signal over the relatively cloud free 
continental regions, as shown by the second EOF mode, presents strengths to the analysis 
procedure employed in this study. This also confirms that the three satellite orbital 
configuration employed by the ERBE gives reasonable diurnal sampling of OLR approximately 
over a period of a month. This study calls for reprocessing of the OLR from the ERBE 
scanner instruments with the biases corrected. A reprocessed OLR data set during the period 
when all three ERBE satellites were operating will be useful to obtain diurnal variation without 
resorting to any artificial modeling and hence invaluable for climate model validation 
purposes.
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of the time series is shown.

Figure 2. Composite diurnal variation of the average sky OLR obtained from cubic spline 
interpolation (solid) and monthly hourly OLR obtained from the ERBE data processing 
scheme (dotted) over the Sahara desert at 1.25°E, 23.75°N.

Figure 3. (a) Spatial mode of the EOF-1 expressed in terms of correlation coefficient and (b) time 
variation of the EOF-1 mode

Figure 4. Same as in figure 3, except for the mode EOF-2

Figure 5. Same as in figure 3, except for the mode EOF-3

Figure 6. Time series of the composite OLR for grid points (a) S.E. Atlantic, (b) S.E. Pacific 
and (c) Andes. Time series with open and closed circles are obtained from the cubic 
spline and linear interpolation, respectively.

Figure 7. Time series of the global average OLR from the ERBE
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longitude 1.25°E. The number in each column indicates the 
number of times that particular local hour was sampled by one of the three ERBE satellites during the entire study period. 
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Figure 3. (a) Spatial mode of the EOF-1 expressed in terms of correlation coefficient and (b) time 
variation of the EOF-1 mode
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Figure 6. Time series of the composite OLR for grid points (a) S.E. Atlantic, (b) S.E. Pacific 
and Andes. Time series with open and closed cicles are obtained from the cubic spline and linear 
interpolation, respectively.
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